ECE 556
Coding Theory

Displaying course information from Fall 2013.

Section Type Times Days Location Instructor
L DIS 1400 - 1520 T R   170 Everitt Lab  Olgica Milenkovic
Web Page
Official Description Coding theory with emphasis on the algebraic theory of cyclic codes using finite field arithmetic, decoding of BCH and RS codes, finite field Fourier transform and algebraic geometry codes, convolutional codes, and trellis decoding algorithms. Course Information: Prerequisite: MATH 417.
Subject Area Communications
Course Prerequisites Credit in MATH 417
Course Directors Richard E Blahut
Detailed Description and Outline


  • Introduction
  • Linear codes: Parity and generator matrices, decoding rules, coset leaders, and standard arrays
  • Bounds on code parameters; Singleton, sphere-packing, Gilbert-Varshamov and other bounds
  • Some simple codes: Hamming, Golay, Reed-Muller codes
  • Finite fields: Basic theory, minimal polynomials
  • Cyclic codes and BCH codes: Ring ideals, generator and parity check polynomials and matrices, the BCH bond
  • Reed-Solomon codes: Reed-Solomon codes as BCH codes, general theory of MDS codes
  • Error-correction procedures: The Peterson-Zierler decoder, Berlekamp-Massey decoding algorithm, Berlekamp-Welch and Sudan's decoding algorithm, Generalized Minimum Distance decoding
  • Convolutional codes: Introduction, encoder circuits, state-diagrams, trellises, path enumerators and error bounds
  • Decoding algorithms for convolutional codes: Viterbi, BCJR, sequential decoding

Same as CS 577, and MATH 579.

R. E. Blahut, Algebraic Codes for Data Transmission, Cambridge University Press, 2002.
Last updated: 2/13/2013