ECE 205
Introduction to Electric and Electronic Circuits

Section Type Times Days Location Instructor
A LEC 0800 - 0920 T R   151 Everitt Lab  Michael Haney
F LEC 1100 - 1220 T R   103 Talbot Laboratory  Hyungsoo Choi
G LEC 1400 - 1520 T R   103 Talbot Laboratory  Mike Roppo
Web Page http://courses.engr.illinois.edu/ece205/
Official Description Basic principles of circuit analysis; transient analysis; AC steady-state analysis; introduction to semiconductor devices and fabrication; digital logic circuits; op-amps; A/D and D/A conversion. Course Information: Credit is not given to Computer or Electrical Engineering majors. Prerequisite: PHYS 212.
Subject Area Core Curriculum
Course Prerequisites Credit in PHYS 212
Course Directors Michael J Haney
Detailed Description and Outline

This course is designed to give non-majors in engineering an introduction to electric circuits, semiconductor devices, and microelectronic circuits.

Topics:

  • Introduction: Charge, current, voltage, power, circuit elements, Ohm's law
  • Kirchhoff's current and voltage laws, voltage and current divisions
  • Node-voltage, mesh-current methods, superposition, and equivalence theorems
  • RC and RL circuits, first-order network, step response
  • Sinusoidal excitation and phasors
  • AC steady-state analysis and AC steady-state power
  • Frequency response, passive filters
  • Semiconductor physics
  • Diodes, diode circuit analysis
  • MOS cicuit analysis
  • MOS logic circuits, including nMOS and CMOS
  • BJT circuit analysis
  • BJT logic circuits, including RTL and TTL
  • Propagation delay, rise and fall time, and noise margin
  • Op-amps, DAC and ADC

ECE students may not receive credit for this course.

Computer Usage

ECE 205 homework and quiz problems are computerized using Lon-Capa, a web-based education system.

Topical Prerequisities
  • Physics in electricity and magnetism
  • Differential and integral calculus
  • Linear, ordinary differential equations
Texts

Essentials of Electrical and Computer Engineering by D. V. Kerns, Jr. and J. D. Irwin, Prentice-Hall.

ABET Category

Engineering Science: 100%

Course Goals

ECE 205 is an introductory course in circuit analysis for non-majors in engineering. The goals are to impart the fundamental principles of electric circuits, semiconductor devices, and electronic circuits that constitute the foundation for preparing a non-major to take follow-on courses involving electric and electronic circuits. The lab work is provided in ECE 206.

Instructional Objectives

By the time of Hour Exam I (after 9 lectures + review), the students should be able to do the following:

  • Calculate the currents and voltages in resistive circuits using Ohm’s law, KCL, KVL, reduction of series and parallel resistances, and voltage and current divisions (a)
  • Find the node voltages in resistive circuits containing current sources and voltage sources using nodal analysis (a)
  • Find the mesh currents and branch currents in resistive circuits containing voltage sources and current sources using mesh analysis (a)
  • Analyze resistive circuits containing multiple sources by using superposition (a)
  • Apply Thevenin’s and Norton’s theorems to simplify a resistive circuit by finding the Thevenin or Norton equivalent of a two-terminal network (a)
  • Determine the initial conditions of circuits containing capacitors and inductors using capacitor rules and inductor rules (a)
  • Calculate the currents and voltages of a first-order network containing a switch, and find the step response of a first-order network containing a step source (a, m)
  • Calculate the currents and voltages in a circuit containing diodes using the simple constant-voltage model for the diode(s) (a, m)

By the time of Hour Exam II (after 19 lectures + review(s)), the students should be able to do all of the items listed under A, plus the following:

  • Determine the modes of operation of the MOSFET and calculate the voltages and currents in a MOS dc circuit, and find the power dissipated by the MOSFET (a, m)
  • Determine the modes of operation of the MOSFETs and find the output voltage and the drain current(s) of various simple inverter circuits for given input voltages (a, m)
  • Determine the modes of operation of the MOSFETs and find the output voltage and the drain current of a CMOS inverter for given input voltages (a, m)
  • Calculate the static power dissipated by a MOS logic circuit for given input voltages (a, m)
  • Determine the modes of operation of the BJT and calculate the voltages and currents in a BJT dc circuit, and find the power dissipated by the BJT (a, m)
  • Determine the modes of operation of the BJTs and the on/off condition of the diodes, and calculate the voltages and currents in various simple BJT/diode circuits for given input voltages (a, m)
  • Calculate the voltages and currents in a circuit containing ideal op amps using ideal op amp rules (a, m)

By the time of the Final Exam (25 lectures + review(s)), the student should be able to do all of the items listed under A and B, plus the following:

  • Find the phasor voltage (current) for a given sinusoidal voltage (current), and find the sinusoidal voltage (current) for given phasor voltage (current) and frequency (a)
  • Find the impedances of resistors, capacitors, and inductors for a given frequency (a)
  • Analyze a phasor circuit using Ohm’s law, KCL, KVL, reduction of series and parallel impedances, and voltage and current divisions (a)
  • Calculate the phasor voltages and currents in a phasor circuit by applying nodal analysis (a)
  • Calculate the phasor voltages and currents in a phasor circuit by applying mesh analysis (a)
  • Find the phasor voltages and currents in a phasor circuit containing multiple sources using superposition (a)
  • Apply Thevenin’s and Norton’s theorems to simplify a phasor circuit by finding the Thevenin or Norton equivalent of a two-terminal network (a)
  • Calculate AC steady-state power dissipated by the circuit elements in a circuit (a)
  • Compute the RMS value for a given voltage (current) waveform (a, m)
  • Determine the power factor of a two-terminal network, and find the impedance for required power factor correction (a, m)
  • Find the transfer function of a passive filter, determine the type of the filter, and calculate the cutoff frequencies (a, m)

Last updated: 3/12/2013