Matthew Gilbert

Electrical and Computer Engineering
Matthew Gilbert
Associate Professor
  • Electrical and Computer Engineering
2256 Micro and Nanotechnology Lab
208 N. Wright Street
Urbana Illinois 61801

Primary Research Area

  • Nanotechnology

For more information


Research Statement

My group is concerned with primarily with theoretically elucidating new phenomena in emergent condensed matter systems with the goal of developing new types of nanoelectronic devices and functionality. As a corollary, we also develop new computational techniques to study and classify these new systems. Here I outline the current interests of my research group

- Nanoelectronics and Low Dimensional Systems

- Strongly Correlated Systems

- Topological Phenomena

- Quantum Computing

Research Interests

  • Topological Insulators and Phenomena
  • Quantum Computing
  • Strongly Correlated Systems
  • Quantum Transport Theory

Research Areas

  • Computational nanotechnology
  • Device modeling
  • Nano-materials
  • Nano-photonics
  • Nanotechnology
  • Quantum nanostructures for electronics and photonics
  • Semiconductor electronic devices
  • Sprintronics

Selected Articles in Journals

  • A. Alexandradinata, Chen Fang, Matthew J. Gilbert, and B. Andrei Bernevig, "Spin-Orbit-Free Topological Insulators without Time-Reversal Symmetry" Physical Review Letters 113, 116403 (2014).
  • Chen Fang, B. Andrei Bernevig, and Matthew J. Gilbert, "Tri-Dirac Surface Modes in Topological Superconductors," arXiv:1401.1823 (2014). Submitted to Physical Review Letters.
  • Chen Fang, Matthew J. Gilbert, and B. Andrei Bernevig, "New Class of Topological Superconductors Protected by Magnetic Group Symmetries," Physical Review Letters 112, 106401 (2014).
  • Chen Fang, Matthew J. Gilbert and B. Andrei Bernevig, “Large Chern Number Quantum Anomalous Hall Effect in Topological Crystalline Insulators,” Physical Review Letters 112, 046801 (2014)
  • Su–Yang Xu, Nasser Alidoust, Ilya Beloposki, Anthony Richardella, Chang Liu, Madbab Neupane, Song–Hsun Huang, Brian Dellabetta, Alexei Fedorov, Wenqing Dai, Qi Li, Matthew J. Gilbert, F. C. Chou, Nitin Samarth, and M. Z. Hasan, “Momentum Space Cooper Pairing in a Helical Dirac Electron Gas,” Nature Physics 10, 1038 (2014).
  • Chen Fang, B. Andrei Bernevig and Matthew J. Gilbert, “Topological Insulators with Commensurate Antiferromagnetism,” Physical Review B 88, 085406 (2013)
  • B. Dellabetta and Matthew J. Gilbert, "Towards Understanding the Superfluid Behavior in Double Layer Graphene Nanostructures," Journal of Computational Electronics 12, 248-264 (2013).
  • Chen Fang, Matthew J. Gilbert, M. Z. Hasan, and B. Andrei Bernevig, "Surface State Quasiparticle Interference in Crystalline Topological Insulators," Physical Review B 88, 125141 (2013).
  • Sungjae Cho, Brian Dellabetta, Alina Yang, John Schneeloch, Zhijun Xu, Tonica Valla, Genda Gu, Matthew J. Gilbert and Nadya Mason, "Symmetry Protected Josephson Supercurrents in Three-Dimensional Topological Insulators," Nature Communications 4, 1689 (2013)
  • Hsiang-Hsuan Hung, Pouyan Ghaemi, Taylor L. Hughes, and Matthew J. Gilbert, "Vortex Lattices in the Superconducting Phases of Doped Topological Insulators and Heterostructures," Physical Review B 87, 035401 (2013)
  • Chen Fang, Matthew J. Gilbert and B. Andrei Bernevig, "Entanglement Spectrum Classification of Cn-invariant Noninteracting Topological Insulators in Two Dimensions," Physical Review B 87, 035119 (2013)
  • Qinglei Meng, Vasudha Shivamoggi, Taylor L. Hughes, Matthew J. Gilbert and S. Vishveshwara, "Fractional Spin Josephson Effect and Electrically Controlled Magnetization in Quantum Spin Hall Edges," Physical Review B 86, 165110 (2012)
  • Qinglei Meng, Taylor L. Hughes, Matthew J. Gilbert and S. Vishveshwara, "Gate Controlled Spin Density Wave and Chiral FFLO Superconducting Phases in Interacting Quantum Spin Hall Edge States," Physical Review B 86, 155110 (2012)
  • Z. J. Estrada, B. Dellabetta, U. Ravaioli, and Matthew J. Gilbert, "Phonon Limited Transport in Graphene Pseudospintronic Devices," IEEE Electron Device Letters 33, 1465 (2012)
  • Youngseok Kim, E. M. Hankiewicz, and Matthew J. Gilbert, "Topological Exciton Superfluids in Three Dimensions," Physical Review B 86, 184504 (2012)
  • Matthew J. Gilbert, B. Andrei Bernevig, and Taylor L. Hughes, "Signatures of Phase Transitions in the Disordered Quantum Spin Hall State from the Entanglement Spectrum," Physical Review B: Rapid Communications 86 , 041401 (2012)
  • Chen Fang, Matthew J. Gilbert and B. Andrei Bernevig, "Bulk Topological Invariants in Noninteracting Point Group Symmetric Insulators," Physical Review B 86, 115112 (2012)
  • Brian Dellabetta, Taylor L. Hughes, Matthew J. Gilbert, and Benjamin L. Lev, "Imaging Topologically Protected Transport with Quantum Degenerate Gases," Physical Review B 85 205422 (2012)
  • Chen Fang, Matthew J. Gilbert, Xi Dai, and B. Andrei Bernevig, "Multi-Weyl Topological Metals Stabilized by Point Group Symmetry," Physical Review Letters 108, 266802 (2012)
  • Youngseok Kim, Brian Dellabetta, and Matthew J. Gilbert, "Interlayer Transport in Disordered Semiconductor Electron Bilayers," Journal of Physics: Condensed Matter 24, 355301 (2012)
  • Youngseok Kim, A. H. MacDonald and Matthew J. Gilbert, "Pseudospin Transfer Torques in Semiconductor Bilayers," Physical Review B 85, 165424 (2012)
  • J. Shumway and Matthew J. Gilbert, "Effects of Fermion Flavor on Exciton Condensates in Double Layer Systems," Physical Review B 85, 033103 (2012)
  • Ching-Kai Chiu, Matthew J. Gilbert, and Taylor L. Hughes,"Vortex Lines in Topological Insulator - Superconductor Heterostructures," Physical Review B 84, 144507 (2011)
  • B. Dellabetta and M. J. Gilbert, "The Effect of Disorder in Superfluid Double Layer Graphene", Journal of Physics: Condensed Matter 23, 345302 (2011)
  • M. J. Gilbert, "Finite Temperature Pseudospin Torque Effect in Graphene Bilayers," Physical Review B 82, 165408 (2010)
  • M. J. Gilbert, "Performance Characteristics of Scaled Bilayer Graphene Pseudospin Devices," IEEE Transactions on Electron Devices 57, 3059-3067 (2010)
  • Jesper Goor Pedersen, Lei Zhang, M. J. Gilbert and J. Shumway, "A Path Integral Study of the Role of Correlation in Exchange Coupling of Spins in Double Quantum Dots and Optical Lattices," Journal of Physics: Condensed Matter 22, 145301 (2010)
  • M.J. Gilbert and J. Shumway,"Probing Quantum Coherent States in Bilayer Graphene," Journal of Computational Electronics 8, 51-59 (2009)

Courses Taught

  • ECE 329 - Fields and Waves I
  • ECE 340 - Semiconductor Electronics
  • ECE 535 - Theory of Semicond & Devices
  • ECE 539 - Adv Theory Semicond & Devices
  • PHYS 565 - Theory of Semicond & Devices