ECE ILLINOIS Facebook ECE ILLINOIS on Twitter ECE ILLINOIS Alumni and Friends on LinkedIn ECE ILLINOIS Instagram

Contact Info

Brad Petersen
Director of
Communications
53 Everitt Lab
1406 W. Green St.
Urbana, IL 61801
Phone: (217) 244-6376
bradp@illinois.edu

Contact Info

Meg Dickinson
Communications Specialist
56 Everitt Lab
1406 W. Green St.
Urbana, IL 61801
Phone: (217) 300-6664
megd@illinois.edu

Related News

Articles about Joseph W. Lyding

Articles about Eric Pop

Articles about John A. Rogers

Related by topic

Self-soldering nanotubes improve device performance

 Subscribe to ECE ILLINOIS News

By Liz Ahlberg, U of I News Bureau
December 2, 2013

  • Professor Joseph Lyding led a research team that developed a way to heal gaps in carbon nanotube arrays.
  • The nano-soldering process is simple and self-regulating, and it improves the device performance by an order of magnitude.
  • The process uses chemical vapor deposition and could be easily inserted into existing fabrication workflows.
Illinois researchers have developed a way to heal gaps in wires too small for even the world’s tiniest soldering iron. Led by ECE Pofessor Joseph W. Lyding and graduate student Jae Won Do, the team recently published its results in the journal Nano Letters
 
Joseph Lyding
Joseph Lyding
Carbon nanotubes are like tiny hollow wires of carbon just 1 atom thick – similar to graphene but cylindrical. Researchers have been exploring using them as transistors instead of traditional silicon, because carbon nanotubes are easier to transport onto alternate substrates, such as thin sheets of plastic, for low-cost flexible electronics or flat-panel displays. 
 
Carbon nanotubes themselves are high-quality conductors, but creating single tubes suitable to serve as transistors is very difficult. Arrays of nanotubes are much easier to make, but the current has to hop through junctions from one nanotube to the next, slowing it down. In standard electrical wires, such junctions would be soldered, but how could the gaps be bridged on such a small scale?
 
“It occurred to me that these nanotube junctions will get hot when you pass current through them,” said Lyding, “kind of like faulty wiring in a home can create hot spots. In our case, we use these hot spots to trigger a local chemical reaction that deposits metal that nano-solders the junctions.”
 
Lyding’s group teamed with Eric Pop an adjunct professor of electrical and computer engineering, and John A. Rogers, Swanlund professor in materials science and engineering, experts on carbon nanotube synthesis and transfer, as well as chemistry professor Greg Girolami. Girolami is an expert in a process that uses gases to deposit metals on a surface, called chemical vapor deposition (CVD).
 
The nano-soldering process is simple and self-regulating. A carbon nanotube array is placed in a chamber pumped full of the metal-containing gas molecules. When a current passes through the transistor, the junctions heat because of resistance as electrons flow from one nanotube to the next. The molecules react to the heat, depositing the metal at the hot spots and effectively “soldering” the junctions. Then the resistance drops, as well as the temperature, so the reaction stops. (See video for demonstration of the process.)
 
The nano-soldering takes only seconds and improves the device performance by an order of magnitude – almost to the level of devices made from single nanotubes, but much easier to manufacture on a large scale.
 
“It would be easy to insert the CVD process in existing process flows,” Lyding said. “CVD technology is commercially available off-the-shelf. People can fabricate these transistors with the ability to turn them on so that this process can be done. Then when it’s finished they can finish the wiring and connect them into the circuits. Ultimately it would be a low-cost procedure.”
 
Now, the group is working to refine the process.
 
“We think we can make it even better,” Lyding said. “This is the prelude, we hope, but it’s actually quite significant.”
 
The National Science Foundation and the Office of Naval Research supported this work.  Lyding and Rogers also are affiliated with the Beckman Institute.
 

Editor's note: media inquiries should be directed to Brad Petersen, Director of Communications, at bradp@illinois.edu or (217) 244-6376.

 Subscribe to ECE ILLINOIS News